Mark schemes

Q1.

Alternative method 1

(Width =) 10 or (length =) 15 seen

May be on the diagram

B1

their height × their width × their length with at least two values correct or $5 \times 10 \times 15$

M1

750

Ignore incorrect units, eg cm²

SC2 for 6000 from using 10 as diameter

A1

Alternative method 2

5 × 5 × 5 or 125

B1

6 × their 125

their 125 must be from $5 \times 5 \times 5$

M1

750

Ignore incorrect units, eg cm²

SC2 for 6000 from using 10 as diameter

A1

Additional Guidance

On diagram, height marked as 10, width as 10 and length as 15

B1

10 × 10 × 15

M1

1500

A1

On diagram, height marked as 10, width as 20 and length as 15

B1

10 × 20 × 15

M1

3000

A1

On diagram, height marked as 10, width as 20 and length as 30 $10 \times 20 \times 30$

6000

SC2

On diagram, height marked as 5, width as 10 and length as 15 In script $10 \times 20 \times 30$

6000

Mark method that leads to answer.

SC2

On diagram, height marked as 5, width as 20 and length as 30

B0 M0

3000

 $\mathbf{A0}$

$$5 \times 10 \times 15 = 750$$

B1

$$750 \div 3 = 250$$
 (on answer line)

M0, A0

Mark whole method

[3]

Q2.

Side of square = 5 Or $5 \times 5 = 25$ oe

May be on diagram

B1

M1

16

May be on diagram

 $16 \times 25 = 400$ oe is M1, A1

A1

Yes and 5 and their 16

Strand (iii) Conclusion must be based on length not volume ft their 16 if B1, M1 awarded and correct conclusion

Q1ft

Additional Guidance

Ignore any volume calculations

Square = 5 cm

B1

 $25 \times 21 = 400$

M1

No

 $\mathbf{A0}$

Q1ft [4]

Q3.

$$\frac{1}{3} \times \frac{1}{2} \times x \times x \times 2x$$

or
$$\frac{1}{3} \times \frac{1}{2} \times CB \times DB \times AB$$
 (2 BC)
$$\frac{1}{2} \times x \times x \times 2x = 24 \text{ is M1 by implication.}$$
M1
$$x^3 = 216$$
M1
$$6 \text{ from T&I is 3 marks}$$

$$6 \text{ without verification or working is 1 mark.}$$
A1

Q4.

$$\pi r l + \pi r^2 = 24\pi$$

 15π

M1

[3]

$$3l + 9 = 24$$

oe e.g.
$$3\pi l = 15\pi$$

M1

5

SC1 for 8 from $\pi r l = 24\pi$ Must see working SC1 for 6 from $\pi r l + 2\pi r = 24\pi$ Must see working **NB** if height calculated after 5 seen ignore

A1

...

[3]

Q5.

Alternative method 1

$$2x \times 2x \times x$$

M1

$$\frac{4}{3}$$
 πx^3 and $4x^3$

Allow × signs, eg
$$\frac{4}{3} \times \pi \times x^3$$

A1

 $\frac{4}{3}$ πx^3 and $4x^3$ and justification such that

$$\frac{\pi}{3}$$
 > 1 or $\frac{4}{3}$ π > 4

Strand (ii)

Alternative method 2

Chooses a value for r, say 10

$$\frac{4}{3} \times \pi \times 10^3 \text{ and } 20 \times 20 \times 10$$

M1

$$4000\pi$$

3

and 4000 or numerical values if π taken as 3.1, say

If values are calculated wrongly do not award this mark but Q mark can still be gained

A1

$$4000\pi$$

their 3

and their 4000 with at least one correct and

justification such that
$$\frac{\pi}{3} > 1$$
 or $\frac{4}{3} > \pi$; 4 oe

 π > 3 not enough without justification that $\frac{4000\pi}{3}$ will be greater than 4000

Q1

Additional Guidance

Note that $\frac{4}{3} \pi r^3$ is just quoting the given formula. Must have $\frac{4}{3} \pi x^3$ and $4x^3$

Note that truncation of π to 3.1 or 3.14 is OK but rounding up is not. This would negate the Q mark.

Let r = 2,

$$\frac{4}{2}$$

 $\overline{3} \times \pi \times 2^3 = 1.3 \times \pi \times 8 = 10.4\pi$

$$4 \times 4 \times 2 = 32$$

A1

М1

$$10.4 \times 3.1 = 31.2 + 1.04 = 32.24 > 32$$

Q1

Truncating values of 3 and π but showing that this still gives a value greater than 3 is acceptable

 $2x \times 2x \times x = 4x^3 = 1.3 \times 3.14 \times x^3$

M1

Uses box method to get $4.29x^3$

A1

Sphere = $4.29x^3$ > Cuboid $4x^3$

Q1

$$1.3 \times 3.14 \neq 4.29$$

Let
$$r = 4$$
, $\frac{4}{3} \times_{\pi} \times_4 3^3 = \frac{4}{3} \times_{\pi} \times_6 4 = \frac{256}{3} \pi$
 $8 \times 8 \times 4 = 256$

MI

$$\frac{256}{3} \pi > 256$$

$$\frac{\pi}{3} > 1$$
A1

 $\pi > 3$

O1

[3]

Q6.

area A = 24(cm²) or area B = 6 (cm²)

MI

24 : 6

A1

4 : 1

ft simplifying their ratio

BIR

[3]

Q7.

(a) $400 + 2$ or $400 - 200$ or 200 or $400 - 200$ or 40

Additional Guidance

400 - 100 - 100 - 100 = 100 is M0 A0

100 as final answer with no working shown is M0 A0 (b) $400 \times 2 \times 2$ or 400×4 or 800×2 or 400 × 4 or 1600 or 0.4 oe **M1** 1.6 SC1 for a correct conversion for their 1600 A1 **Additional Guidance** 1200 ml = 1.2 l is SC1 1000 ml = 1 l with 1 on answer line is M1 A0 1 I = 1000 ml alone is M0 A0 [4] Q8. (a) 10.8 × 8 or 86.4 **M1** 50 × 110 × 35 or 192 500 Must use correct volume formula M1their 192 500 ÷ 1000 or 192.5 Dep on 2nd M1 M1dep their 192.5 - their 86.4 Dep on M1M1M1 M1dep 106.1 or 106 A1 Alternative method 2 10.8 × 8 × 1000 or 86 400 oe M1 50 × 110 × 35 or 192 500 Must use correct volume formula **M1** their 192 500 - their 86 400 or 106 100 Dep on M1M1

		M1dep
	their 106 100 ÷ 1000	
	Dep on M1M1M1	M1dep
	106.1 or 106	A1
	Additional Guidance	
	192.5 2nd	M1M1dep
	106 100 MI	M1M1dep
	50 × 110 × 35 = 192 500 ÷ 2	2ndM0
(b)		
	be greater	B1
	Additional Guidance	
	It was more	B1
	More water saved	B1
	She underestimated it	B1
	She underestimated the water saved	B1
	She's saving more water because she's using more water than the cuboid	B 1
	Greater than 106.1 litres (may need to check value in part (a) if they quote a different value)	
	More than Eva's assumption	B1
	More than Eva e accumption	B1
	Eva's assumption was not accurate therefore the prediction was wrong	В0
	She underestimated the water	В0
	Less water used	В0
	It was inaccurate	В0
	A uses more water than B (only talking about the diagram)	

B0B saves more than A (only talking about the diagram) **B**0 Saves a lot of water B0More water used **B**0 Cuboid smaller than bath B0Used more water in the bath than she thought B0[6] Q9. 12.9 × 12.9 or 166.41 **M1** × their 166.41 × 17.4 **M**1 965.178 or 965.18 or 965.2 or 965 **A1** [3] Q10. $\frac{\cdot}{3}$ × π × 9² × 16 or 432 π [1356, 1357.4] **M1** $\frac{1}{(2 \times)} \frac{4}{3} \times \pi \times 9^3 \text{ or } 486 \pi \text{ or } 972 \pi$ [1526, 1527.1] or [3052, 3054.1] **M1** [1356, 1357.4] and [1526, 1527.1] or 432π and 486π **A1** [2882, 2884.5] or 2900 or 918π **A1 Additional Guidance** 2900 with or without working 4 marks

Q11.

Alternative method 1

$$\frac{1}{3}\pi(r+2)^2r$$

M1

$$\frac{4}{3}\pi r^3 = \frac{1}{3}\pi (r+2)^2 r$$

oe

M1dep

$$3r^2 - 4r - 4 (= 0)$$

or $3r^2 - 4r = 4$

oe

Reduces to three term quadratic

M1dep

$$(3r + 2)(r - 2) (= 0)$$

M1dep

2

must discard
$$r = -\frac{2}{3}$$

SC2 Answer 2 with no working

A1

Alternative method 2

$$\frac{1}{3}\pi(r+2)^2r$$

M1

$$\frac{4}{3}\pi r^3 = \pi (r+2)^2 r$$

oe

M1dep

$$4r^2 = (r + 2)^2$$

M1dep

$$2r = r + 2$$

M1dep

2

SC2 Answer 2 with no working

A1

Additional Guidance

Answer
$$r = 2$$
 and $r = -\frac{2}{3}$

If there is incorrect working, unless recovered, apply the scheme even if r = 2 is seen

M4 A0

[5]

Q12.

125 : 27

B1

[1]

Q13.

(a)
$$\frac{4}{3} \times \pi \times 8^3$$

M1

[2143, 2145] or
$$\frac{2048}{3}$$
 π

A1

Additional Guidance

$$\frac{4}{3} \times 3(.1) \times 8^3$$

M0

(b) $8 \times 2 \text{ or } 16$

May be seen on diagram

M1

8 × 6 or their 16 × 3 or 48

May be seen on diagram

M1

their 16 × their 16 × their 48

oe

M1

12288

SC2 1536

A1

[6]

Q14.

144% or 1.44 seen

B1

 $\sqrt{1.44}$ or 1.2

oe

Page 11 of 12

their 1.2 × 32 $$\rm{M1dep}$$ 38.4 $$\rm{A1}$$

[4]