Q1.

Alternative method 1

$$
\begin{aligned}
& (\text { Width }=) 10 \text { or (length }=) 15 \text { seen } \\
& \text { May be on the diagram }
\end{aligned}
$$

their height \times their width \times their length with at least two values correct
or $5 \times 10 \times 15$

750
Ignore incorrect units, eg cm²
SC2 for 6000 from using 10 as diameter

Alternative method 2

$5 \times 5 \times 5$ or 125
$6 \times$ their 125
their 125 must be from $5 \times 5 \times 5$

750
Ignore incorrect units, eg cm²
SC2 for 6000 from using 10 as diameter

Additional Guidance

On diagram, height marked as 10, width as 10 and length as 15 $10 \times 10 \times 15$

1500

On diagram, height marked as 10, width as 20 and length as 15
$10 \times 20 \times 15$
3000

On diagram, height marked as 10 , width as 20 and length as 30 $10 \times 20 \times 30$ 6000

On diagram, height marked as 5 , width as 10 and length as 15 In script $10 \times 20 \times 30$

On diagram, height marked as 5 , width as 20 and length as 30
$5 \times 20 \times 30$
3000
$5 \times 10 \times 15=750$
$750 \div 3=250$ (on answer line)
Mark whole method

Q2.
Side of square $=5$
Or $5 \times 5=25$ oe
May be on diagram
B1
$400 \div 25$
M1

16
May be on diagram $16 \times 25=400$ oe is M1, A1

Yes and 5 and their 16

Strand (iii) Conclusion must be based on length not volume ft their 16 if B1, M1 awarded and correct conclusion

Additional Guidance

Ignore any volume calculations
Square $=5 \mathrm{~cm}$
B1
$25 \times 21=400$

No

Q3.

$$
\frac{1}{3} \times \frac{1}{2} \times x \times x \times 2 x
$$

$$
\text { or } \begin{array}{r}
\frac{1}{3} \times \frac{1}{2} \times C B \times D B \times A B(2 B C) \\
\\
\frac{1}{2} \times x \times x \times 2 x=24 \text { is M1 by implication. }
\end{array}
$$

$x^{3}=216$

6
6 from T\&I is 3 marks
6 without verification or working is 1 mark.

Q4.
$\pi r l+\pi r^{2}=24 \pi$
15π

$$
3 l+9=24
$$

oe e.g. $3 \pi l=15 \pi$

5
SC1 for 8 from $\pi r l=24 \pi \quad$ Must see working
SC1 for 6 from $\pi r l+2 \pi r=24 \pi$ Must see working NB if height calculated after 5 seen ignore

Q5.
Alternative method 1
$2 x \times 2 x \times x$
$\frac{4}{3}$
πx^{3} and $4 x^{3}$

$$
\text { Allow } \times \text { signs, eg }{ }^{\frac{4}{3}} \times \pi \times x^{3}
$$

$\frac{4}{3} \pi x^{3}$ and $4 x^{3}$ and justification such that
$\frac{\pi}{3}>1$ or ${ }^{\frac{4}{3}} \pi>4$
Strand (ii)

Alternative method 2

Chooses a value for r, say 10
$\frac{4}{3} \times \pi \times 10^{3}$ and $20 \times 20 \times 10$
$\frac{4000 \pi}{3}$
and 4000 or numerical values if π taken as 3.1 , say
If values are calculated wrongly do not award this mark but Q mark can still be gained
their $\frac{4000 \pi}{3}$ and their 4000 with at least one correct and
justification such that $\frac{\pi}{3}>1$ or ${ }^{\frac{4}{3}}>\pi$; 4 oe
$\pi>3$ not enough without justification that $\frac{4000 \pi}{3}$ will be
greater than 4000

Additional Guidance

Note that ${ }^{\frac{4}{3}} \pi r^{3}$ is just quoting the given formula. Must have ${ }^{\frac{4}{3}} \pi x^{3}$ and $4 x^{3}$
Note that truncation of π to 3.1 or 3.14 is OK but rounding up is not. This would negate the Q mark.

Let $r=2$,
$\frac{4}{3} \times \pi \times 2^{3}=1.3 \times \pi \times 8=10.4 \pi$
$4 \times 4 \times 2=32$
$10.4 \times 3.1=31.2+1.04=32.24>32$
Truncating values of ${ }^{\frac{4}{3}}$ and π but showing that this still gives a value greater than 3 is acceptable
$2 x \times 2 x \times x=4 x^{3}=1.3 \times 3.14 \times x^{3}$
Uses box method to get 4.29x ${ }^{3}$
Sphere $=4.29 x^{3}>$ Cuboid $4 x^{3}$

Let $r=4$,
$\frac{4}{3} \times \pi \times 4^{3}=\frac{4}{3} \times \pi \times 64=\frac{256}{3} \pi$
$8 \times 8 \times 4=256$
$\frac{256}{3} \pi>256$
$\frac{\pi}{3}>1$
$\pi>3$

Q6.
area $A=24\left(\mathrm{~cm}^{2}\right)$ or area $B=6\left(\mathrm{~cm}^{2}\right)$
$24: 6$
$4: 1$

> ft simplifying their ratio

Q7.
(a) $400 \div 2$ or $400-200$ or 200
or $400 \div 4$ or $400-200-100$
or 400-300 or 100
or $400 \div 8$
or 400-200-100-50
or 400-350
oe
One correct step
Working may be on diagram

50

Additional Guidance

$400-100-100-100=100$
is MO AO

100 as final answer with no working shown
(b) $400 \times 2 \times 2$ or 400×4 or 800×2
or 400×4
or 1600
or 0.4
oe
1.6

SC1 for a correct conversion for their 1600

Additional Guidance

$1200 \mathrm{ml}=1.2 \mathrm{I}$
$1000 \mathrm{ml}=1 \mathrm{I}$ with 1 on answer line
$1 \mathrm{I}=1000 \mathrm{ml}$ alone
is SC1
is M1 A0
is MO AO

Q8.
(a) 10.8×8 or 86.4
$50 \times 110 \times 35$ or 192500
Must use correct volume formula
their $192500 \div 1000$ or 192.5
Dep on 2nd M1
their 192.5 - their 86.4
Dep on M1M1M1
106.1 or 106

Alternative method 2

$10.8 \times 8 \times 1000$ or 86400
oe
$50 \times 110 \times 35$ or 192500
Must use correct volume formula
their 192500 - their 86400 or 106100
Dep on M1M1
their $106100 \div 1000$ Dep on M1M1M1
106.1 or 106

Additional Guidance

192.5
2ndM1M1dep
106100
M1M1M1dep
$50 \times 110 \times 35=192500 \div 2$
2ndM0
(b) A comment that the answer to part (a) was too low or that the amount saved would be greater

Additional Guidance

It was more
More water saved
She underestimated it
B1
She underestimated the water saved
She's saving more water because she's using more water than the cuboid
B1
Greater than 106.1 litres (may need to check value in part (a) if they quote a different value)
More than Eva's assumption
B1
B1
Eva's assumption was not accurate therefore the prediction was wrong
She underestimated the water
Less water used
It was inaccurate
A uses more water than B (only talking about the diagram)
B saves more than A (only talking about the diagram) B0
Saves a lot of water B0
More water used B0
Cuboid smaller than bathB0Used more water in the bath than she thoughtB0
Q9.
12.9×12.9 or 166.41M1
$\frac{1}{3}$ \times their $166.41 \times 17.4$965.178 or 965.18 or 965.2 or 965A1
$\left(\frac{1}{2} \times\right)^{\frac{4}{3}} \times \pi \times 9^{3}$ or 486π or 972π oe
[1526, 1527.1] or [3052, 3054.1]

Additional Guidance

2900 with or without working

Q11.

Alternative method 1
$\frac{1}{3} \pi(r+2)^{2} r$
$\frac{4}{3} \pi r^{3}=\frac{1}{3} \pi(r+2)^{2} r$
oe
M1dep
$3 r^{2}-4 r-4(=0)$
or $3 r^{2}-4 r=4$
oe
Reduces to three term quadratic
$(3 r+2)(r-2)(=0)$

2
must discard $r=-\frac{2}{3}$
SC2 Answer 2 with no working

Alternative method 2

$\frac{1}{3} \pi(r+2)^{2} r$
$\frac{4}{3} \pi r^{3}=\pi(r+2)^{2} r$
oe
$4 r^{2}=(r+2)^{2}$
$2 r=r+2$
M1dep
2
SC2 Answer 2 with no working

Additional Guidance

Answer $r=2$ and $r=-\frac{2}{3}$
If there is incorrect working, unless recovered, apply the scheme even if $r=2$ is seen

Q12.

125 : 27
B1

Q13.

(a) $\begin{array}{r}\frac{4}{3} \times \pi \times 8^{3} \\ \\ \text { oe }\end{array}$
$[2143,2145]$ or $\frac{2048}{3} \pi$

Additional Guidance

$\frac{4}{3} \times 3(.1) \times 8^{3}$
(b) 8×2 or 16

May be seen on diagram
8×6 or their 16×3 or 48
May be seen on diagram
their $16 \times$ their $16 \times$ their 48
oe

12288
SC2 1536

Q14.
144% or 1.44 seen
their 1.2×32

M1dep

38.4

